Module 2 Review sheet

1. What are forecast origin, forecast horizon?

Forecast origin: the point in time from which the forecasts start.

Forecast horizon: how far ahead do we wish to forecast.

Example:

 $F_{13}(2)$: forecast horizon: 2

forecasting origin: 13 - 2 = 11

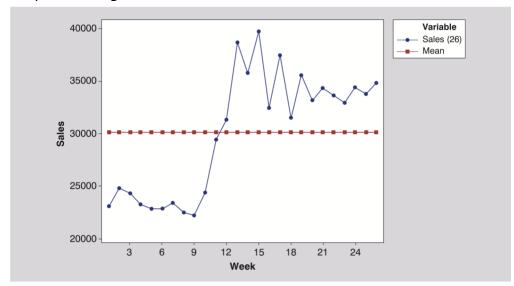
Table 3.1 Notation for Forecasts Made at Different Forecast Origins and for Varying Forecast Horizons

Forecast Origin	12	13	14
Forecast for period 13	F ₁₃ (1)		
Forecast for period 14	F ₁₄ (2)	F ₁₄ (1)	
Forecast for period 15	F ₁₅ (3)	F ₁₅ (2)	F ₁₅ (1)

2. What is Locally constant forecasts? What does the time series plot look like?

$$F_{t+h}(h) = \text{constant}$$

The plot showing future forecasts is a horizontal line.



3. What is moving average? How to calculate the MA(t|K)? How to use Moving Average to make prediction?

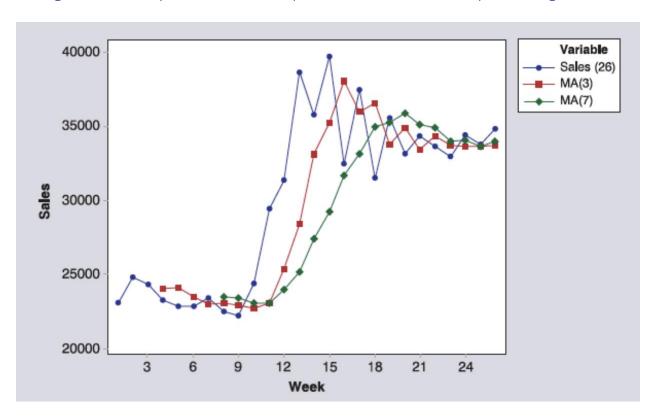
the moving average of order K evaluated at time t is denoted by MA(t|K), which is the average of last K terms of the series:

$$MA(t|k) = \frac{Y_t + Y_{t-1} + \dots + Y_{t-K+1}}{K}$$

We can forecast the time series at time (t+1) using MA(t|K):

$$F_{t+1} = MA(t|K)$$

4. Larger values of K produce smoother plots but are slower to adapt to changes.



5. What is centered moving average? How to manually calculate CMA(K)?

When K is odd: CMA(k) is the average of

$$Y_{t-\frac{k-1}{2}}, \dots, Y_t, \dots, Y_{t+\frac{k-1}{2}}$$

When K is even:

 $CMA(K) = (MA_t(K) + MA_{t+1}(K))/2$ and placed at period t-k/2+1

$$K = 4$$
, $t = 4 CMA(4)$

$$CMA(3.5) = mean(Y_2, Y_3, Y_4, Y_5)$$

 $CMA(4.5) = mean(Y_3, Y_4, Y_5, Y_6)$

6. What is a Simple Exponential Smoothing? What is the Error Correction form:

$$F_{t+1} = L_{t+1} = L_t + \alpha e_t$$

 F_{t+1} is the 1-step ahead prediction for time t+1. e_t is the 1-step ahead prediction error for time t. $e_t = Y_t - F_t$ α is the smoothing parameter used to update the local level term.

Smaller α gives slow adjustment. Larger α gives rapid adjustment. $\alpha=0$ means there is a fixed level term.

7. What is the 1-step ahead forecast using SES? What is the h-step ahead forecast using SES?

$$F_{t+h}(h) = F_{t+1}(1) = F_{t+1} = L_{t+1} = L_t + \alpha e_t$$

The h-step ahead forecast is the same as the 1-step ahead forecast using SES.

8. What is a Linear Exponential Smoothing? How do we update the level term and the trend term?

Forecast Error:

$$e_t = Y_t - F_t = Y_t - (L_{t-1} + T_{t-1})$$

Update the level term and trend term:

$$\frac{L_t}{L_t} = L_{t-1} + T_{t-1} + \alpha e_t$$

$$T_t = T_{t-1} + \alpha \beta e_t$$

The h-step ahead forecast:

$$F_{t+h}(h) = L_t + hT_t$$

 α is the smoothing parameter used to update the local level term. β is the smoothing parameter used to update the local trend term.

9. What is the 1-step ahead forecast using LES? What is the h-step ahead forecast using LES?

1-step ahead forecast:

$$F_{t+1}(1) = L_t + \frac{T_t}{T_t}$$

h-step ahead forecast:

$$F_{t+h}(h) = L_t + hT_t$$

10. When should we use Holt-Winters Model?

Holt- Winters Model includes level term, trend term and seasonal components.

11. How do we update the level, trend, and season term for Holt-Winters Model?

$$L_t = L_{t-1} + T_{t-1} + \alpha e_t$$

$$T_t = T_{t-1} + \alpha \beta e_t$$

$$S_t = S_{t-m} + \gamma e_t$$

12. Meaning of smoothing parameters of a Holt-Winters Model. Special cases when certain smoothing parameters are 0.

 α is smoothing parameter for level term.

 β is smoothing parameter for trend term.

 γ is smoothing parameter for seasonal component.

Special Cases:

- Fixed seasonal pattern: $\gamma = 0$ (no seasonal updating)
- No seasonal pattern: $\gamma = 0$ and all initial S values are set equal to zero
- Fixed trend: $\beta = 0$
- Zero trend: $\beta = 0$ and $T_0 = 0$
- All fixed components: $\alpha = \beta = \gamma = 0$

13. What is a State Space Model? What are observation equations? What are state equations?

A state space model consists of two parts:

- 1. An observation equation that relates the random variables (Yt, the actual value) to the underlying state variable(s).
- 2. One or more state equations that describe how the state variables evolve over time.

14. What are state variables for SES, LES, Holt-Winters Model?

SES: L

LES: L, and T

Holt-Winters Model: L, T, and S

15. What are observation equation and state equation for SES?

Observation equation: $Y_t = L_{t-1} + \epsilon_t$

State equation: $L_t = L_{t-1} + \alpha \epsilon_t$ Forecast function: $F_t = L_{t-1}$

16. What are observation equation and state equation for LES?

Observation equation: $Y_t = L_{t-1} + T_{t-1} + \epsilon_t$

State equation: $L_t = L_{t-1} + T_{t-1} + \alpha \epsilon_t$ $T_t = T_{t-1} + \alpha \beta \epsilon_t$

Forecast function: $F_{t+h}(h) = L_{t-1} + hT_{t-1}$

17. What are observation equation and state equation for Additive Holt-Winters Model?

Observation equation: $Y_t = L_{t-1} + T_{t-1} + S_{t-m} + \epsilon_t$

State equation: $L_{t} = L_{t-1} + T_{t-1} + \alpha \epsilon_{t}$ $T_{t} = T_{t-1} + \alpha \beta \epsilon_{t}$ $S_{t} = S_{t-m} + \gamma \epsilon_{t}$

Forecast function: $F_{t+h}(h) = L_{t-1} + hT_{t-1} + S_{t+h-m}$

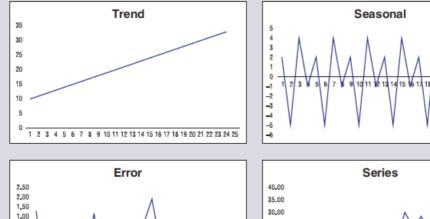
18. What are the 3 components of time series data?

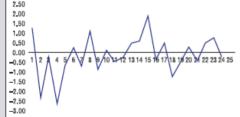
T = Trend + Cycle

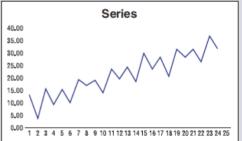
S = Seasonal Components

E = Random Error

19. Time series plot of original time series data and time series plot of each component







20. What are the relationship between the actual values (Y) and the 3 components in different models?

Additive model: Y = T + S + E

Multiplicative model: Y = TSE

Mixed additive-multiplicative model: Y = TS + E; or Y = (T + S)E

21. How to use R to fit a State Space Model? How to make point prediction and construct a prediction interval?

Method	Observation Equation	ETS
SES	Y = L + E	A,N,N
LES	Y = L + T + E	A,A,N
Multiplicative LES	Y = L * T * E	M,M,N
Seasonal SES	Y = S + E	A, N, A
Additive Holt-Winters	Y = L + T + S + E	A, A, A
Multiplicative Holt-Winters	Y = (L + T)* S * E	M, A, M

Example:

Suppose we have a time series object from time period 1 to time period t : data.ts We want to fit an additive Holt-Winters Model

R code: